Quantum CNN

This paper presents a quantum convolutional neural network (QCNN) for the classification of high energy physics events. The proposed model is tested using a simulated dataset from the Deep Underground Neutrino Experiment. The proposed quantum architecture demonstrates an advantage of learning faster than the classical convolutional neural networks (CNNs) under a similar number of parameters. In addition to the faster convergence, the QCNN achieves a greater test accuracy compared to CNNs. Based on our results from numerical simulations, it is a promising direction to apply QCNN and other quantum machine learning models to high energy physics and other scientific fields.